Porosity:
Porosity (n) is a directly measurable aquifer property; it is a fraction between 0 and 1 indicating the amount of pore space between unconsolidated soil particles or within a fractured rock. Typically, the majority of groundwater (and anything dissolved in it) moves through the porosity available to flow (sometimes called effective porosity). Permeability is an expression of the connectedness of the pores. For instance, an unfractured rock unit may have a high porosity (it has lots of holes between its constituent grains), but a low permeability (none of the pores are connected). An example of this phenomenon is pumice, which, when in its unfractured state, can make a poor aquifer.
Porosity does not directly affect the distribution of hydraulic head in an aquifer, but it has a very strong effect on the migration of dissolved contaminants, since it affects groundwater flow velocities through an inversely proportional relationship.
Water content:
water contentWater content (?) is also a directly measurable property; it is the fraction of the total rock which is filled with liquid water. This is also a fraction between 0 and 1, but it must also be less than or equal to the total porosity.
The water content is very important in vadose zone hydrology, where the hydraulic conductivity is a strongly nonlinear function of water content; this complicates the solution of the unsaturated groundwater flow equation.
Hydraulic conductivity:
Hydraulic conductivityHydraulic conductivity (K) and transmissivity (T) are indirect aquifer properties (they cannot be measured directly). T is the K integrated over the vertical thickness (b) of the aquifer (T=Kb when K is constant over the entire thickness). These properties are measures of an aquifer's ability to transmit water. Intrinsic permeability (?) is a secondary medium property which does not depend on the viscosity and density of the fluid (K and T are specific to water); it is used more in the petroleum industry.
Specific storage and specific yield:Specific storage (Ss) and its depth-integrated equivalent, storativity (S=Ssb), are indirect aquifer properties (they cannot be measured directly); they indicate the amount of groundwater released from storage due to a unit depressurization of a confined aquifer. They are fractions between 0 and 1.
Specific yield (Sy) is also a ratio between 0 and 1 (Sy = porosity) and indicates the amount of water released due to drainage from lowering the water table in an unconfined aquifer. Typically Sy is orders of magnitude larger than Ss. Often the porosity or effective porosity is used as an upper bound to the specific yield.
Contaminant transport properties:
Often we are interested in how the moving groundwater water will move dissolved contaminants around (the sub-field of contaminant hydrogeology). The contaminants can be man-made (e.g., petroleum products, nitrate or Chromium) or naturally occurring (e.g., arsenic, salinity). Besides needing to understand where the groundwater is flowing, based on the other hydrologic properties discussed above, there are additional aquifer properties which affect how dissolved contaminants move with groundwater.
Dispersivity (aL, aT) is an empirical factor which quantifies how much contaminants stray away from the path of the groundwater which is carrying it. Some of the contaminants will be "behind" or "ahead" the mean groundwater, giving rise to a longitudinal dispersivity (aL), and some will be "to the sides of" the pure advective groundwater flow, leading to a transverse dispersivity (aT).
Dispersivity is actually a factor which represents our lack of information about the system we are simulating. There are many small details about the aquifer which are being averaged when using a macroscopic approach (e.g., tiny beds of gravel and clay in sand aquifers), they manifest themselves as an apparent dispersivity. Because of this, a is often claimed to be dependent on the length scale of the problem — the dispersivity found for transport through 1 m³ of aquifer is different than that for transport through 1 cm³ of the same aquifer material.
Hydrodynamic dispersion (D) is a positive physical parameter which describes the molecule-scale movement of solute away from the mean flow; it is a result of Brownian motion. This is the same mechanism as dye uniformly spreading out in a still bucket of water. The dispersion coefficient is typically quite small (typically orders of magnitude smaller than a), and can often be considered negligible (unless groundwater flow velocities are extremely low, as they are in clay aquitards).
It is important not to confuse hydrodynamic dispersion with dispersivity, as the former is a physical phenomenon and the latter is an empirical factor which is cast into a similar form as dispersion, because we already know how to solve that problem.
No comments:
Post a Comment